An elemental excursion

Last December I was fortunate enough to find myself in Sweden for almost a week to join in with the celebrations surrounding the 2016 Nobel Prize in Chemistry. It’s hard to put into words just what that was like (although I will try at some point in the hopefully not-too-distant future with a blog post). It was a busy week, but the day before the award ceremony and banquet on December 10th (it’s always on the anniversary of Alfred Nobel’s death), I had an opening in my schedule and an offer from Brett Thornton and Emma Karlsson to take me on a periodic-table pilgrimage.

Brett has coauthored a range of essays for Nature Chemistry over the years and Emma has provided beautiful illustrations (one example can be found here) for some of them. After discussing what the options were for some chemistry-themed tourism in and around Stockholm, I think it was Brett who pointed out that the small village of Ytterby isn’t all that far away. For the chemists reading this post, you’ll probably have some idea of the significance of Ytterby; for those of you who don’t, let me explain. There are now 118 recognized elements with a seat at the periodic table and 4 of them (just over 3% of them!) are named for this little Swedish village.

So, on Friday morning we set out by car from Stockholm and headed for a little place that has played a large part in the history of chemistry.

A sign-selfie with Brett and Emma.

Ytterby attained! A sign-selfie with Brett and Emma.

The story of Ytterby has been told by others on quite a few occasions and I’m not about to rehash it here. But to give you some context to the pictures below, here’s a brief summary: Ytterby is the home to a mine (closed since 1933) in which Carl Axel Arrhenius, a Lieutenant in the Swedish army (and no relation to that Arrhenius), found unusual heavy black rock in 1787. He sent samples to Johan Gadolin who analysed them and identified what later became known as yttria (yttrium oxide) which kicked off a chain of discoveries of new elements. Although originally named ytterbite, the new black mineral found in Ytterby was later renamed gadolinite in honour of Gadolin. It turned out, however, that yttria samples weren’t just yttrium oxide, but contained other oxides and, ultimately, was the source of ten new elements: yttrium, terbium, gadolinium, erbium, thulium, holmium, dysprosium, ytterbium, lutetium and scandium (see more detailed posts here and here).

So, shortly after arriving in Ytterby we found this sign, including a shout-out to the 1987 Nobel Prize in Physics for superconductivity in ceramic materials:

The front of the sign – how's your Swedish?

The front of the sign – how’s your Swedish?

If your Swedish isn’t up to it, there’s always the other side (although it’s not a translation of the Swedish, it’s just more information about the history of the mine). There’s also something a little funky going on with that formula – the first zero should actually be a capital ‘O’ and there’s a spurious minus sign at the end (once an editor, always an editor…):

The reverse side of the sign at the bottom of the mine steps.

The reverse side of the sign at the bottom of the mine steps.

We then climbed up a set of wooden steps to reach the top of the filled-in vertical mine shaft. There’s a pretty good view once you’re up there.

The steps leading up to the filled-in mine shaft.

The steps leading up to the filled-in mine shaft.

From the top of the steps there is a short path that leads into a small clearing that is surrounded on all sides by what’s still visible of the mine walls (presumably the shaft was not filled right to the top after the mine was closed).

On top of the filled-in mine shaft. Brett and Emma for scale ;-)

On top of the filled-in mine shaft. Brett and Emma for scale ;-)

I really don’t know a lot about rock formations or geology, but Brett and Emma pointed out a few notable features in the mine walls. The one shown below is sort of a star-burst pattern, which is apparently an indication of radioactivity. Perhaps my Google-fu is not up to it, but I couldn’t track down any more information about these patterns, so if any geologists are reading this, please comment and tell me more! There’s no doubt that Ytterby mine has relatively high levels of natural radioactivity though.

A starburst pattern in the rock of the mine wall.

A star-burst pattern in the rock of the mine wall.

There’s also a fairly big crystal (I think Brett said it was feldspar) to be found in the mine wall – thanks to Emma for providing scale!

A great big crystal in the mine wall!

A big orange-ish crystal in the mine wall!

And returning to my geological ignorance, I have no idea what any of this is, but it looks pretty:

One kind of rock that I can't identify forming seams in another that I have no idea about either...

One kind of rock that I can’t identify, forming seams in another type of rock that I have no idea about either…

There are also reminders of human activity at the mine, including a metal rod in the rock face and also some writing. I assume it’s not graffiti – if it is, it’s rather classy considering the use of Roman numerals. I wonder what the significance of 1864 was?

The writing's on the wall.

The writing’s on the wall.

After inspecting the walls for a little while, Brett said there was a plaque somewhere nearby denoting the mine as a landmark and so we set about looking for it. If you stand at the entrance to the clearing (facing the mine) there are some boulders to your left and a short climb up over these takes you to the ASM International sign:

This sign at the top of the mine sums things up pretty well.

This sign at the top of the mine sums things up pretty well.

We then headed back out of the clearing and walked up around the edge of the mine shaft by following a path to the right (which seemed to go through, or at least very close to, somebody’s back garden). This takes you up above the mine where there is a small ventilation shaft, which isn’t much to look at. On the other hand, the view from above the mine is quite stunning (or it was the day we were there):

The (pretty spectacular) view from above the mine.

The (pretty spectacular) view from above the mine.

Before the trip, Brett pointed out that a few of the roads in Ytterby are named for some of the elements and we set about finding as many of these as we could as we walked through the village to and from the mine. Here’s a Terbium Road selfie:

Just in case you're confused about how Terbiumvägen got its name.

Just in case you’re confused about how Terbiumvägen got its name.

And here’s Tantalum road:

And another road named for an element that was present in the Ytterby mine.

Another road in Ytterby named for an element that was present in the mine.

It’s not just elements that get in on the act, some roads are also named for minerals too. There’s Fältspatsvägen and also Gadolinitvägen:

I'll meet you at the corner of Gadolinite Road and Yttrium Road...

I’ll meet you at the corner of Gadolinite Road and Yttrium Road…

With all the sights seen, it was time for lunch and so we headed to nearby Vaxholm (which, incidentally, is where Carl Axel Arrhenius was stationed when he visited the mine at Ytterby and found the black stone that started the whole story). Apparently there is now a museum in the fortress that includes an exhibit about the Ytterby mine (we didn’t visit, but the folks from the Periodic Table of Videos have been there).

Vaxholm Fortress – built in 1544 to defend Stockholm from naval attacks

Vaxholm Fortress – built in 1544 to defend Stockholm from naval attacks and now the home of a museum.

Being in Stockholm for the Nobel festivities was an incredible experience and the opportunity to visit the Ytterby mine while I was there (which essentially amounts to a holy site for chemistry) made it even more special. Many thanks to Brett and Emma for being my tour guides that day. The next day was pretty special too, with the Nobel ceremony and banquet, proving that for some a visit to Sweden in December is not a rare-earth mine, but a gold mine…

Didn't expect to be getting quite so close to one of these last December...

Didn’t expect to be getting quite so close to one of these last December…

And I even got to hold it… although I had to give it back eventually!

So that's what the other side of a Nobel medal looks like.

So that’s what the other side of a Nobel medal looks like.

Posted in History of science, Life in general | Tagged , , , , , , , , , , , , , , , , , , , , , | Leave a comment

Another 100 chemists on Twitter

After someone (Per-Ola Norrby, I think) pointed out that my original list of 100 chemists on Twitter is now down to 99 (there’s 100 in the blog post, but the Twitter list only has 99 members now that one of those listed seems to have left Twitter…), I thought I’d finally get around to doing another list…

Just to head some of you off at the pass, here’s a reminder of what I said last time:

1. This is not a list of the top 100 chemists on Twitter (or the 101-200th best chemtweeps). It’s pretty much random – it’s not based on follower count, h-index or anything else silly like that.

2. Not everyone on this list is necessarily a card-carrying chemist, but they are all people who, more often than not, have something to say on Twitter about chemistry in all its many guises.

3. As with any list, its content is biased by its creator (me in this case). Feel free to leave comments, including the names of your favourite chemtweeps that I have inevitably missed, and to criticize, analyze and deconstruct this list to your heart’s content. Also let me know if any links are wrong/broken.

4. I think I’ve limited this to real people (rather than journals or blogs), but there are lots of other great chemistry Twitter feeds you could follow (also noted in the first list). Don’t forget about Compound Interest too…

[UPDATE: Ah, the perils of lists; you feel bad when you realise who you left out. Other suggestions of people to follow on Twitter after I published this list (will be first on the 3rd list of 100, I promise…): Brian Wagner (@DrummerBoy2112), Olexandr Isayev (@olexandr), Mark Stradiotto (@MarkStradiotto), Warren Piers (@wpiers1), Ragogna Group (@RagognaGroup), Matteo Cavalleri (@physicsteo), John Milligan (@ArsChemia), Jason Dutton (@DuttonChemistry), John Coupland (@JohnNCoupland), John Tucker (@JohnTuckerPhD), Sean Ekins (@collabchem), Scott Reed (@ReadScottReed), John LaMattina (@John_LaMattina), Valerie A. Schmidt (@v_a_schmidt), L.-C. Campeau (@DrLCsquare), Matt Cliffe (@MJCliffe), Adrian Roitberg (@adrian_roitberg), Thorri Gunnlaugsson (@ThorriGunnlaugs), Bill Wuest (@wmwuest)]

The list below is in alphabetical order of Twitter @names and can be found as a list on Twitter here.

aspuru-guzikAlan Aspuru-Guzik (@A_Aspuru_Guzik)
Theoretical Chemist, Quantum Information Scientist, Professor

dingleAdrian Dingle (@adchempages)
Chemistry Educator, Writer & Author | Currently adapting @sam_kean’s Disappearing Spoon | AACT | SCBWI | NASW | ABSW | RSC | ACS | apchemistry | CHEM NOT #stem

mulhollandAdrian Mulholland (@AdrianMulholla1)
Professor of Chemistry, University of Bristol. Computational chemistry, enzyme catalysis, biomolecular simulation, HPC, antibiotic resistance. Views my own, not RTs

cooperAndy Cooper (@aicooper)
Mostly science related

stoddartAlison Stoddart (@ali_stoddart)
Chief Editor (@NatRevMater). Dividing time between materials science and malbec. Mostly malbec.

williamsonAlice Williamson (@all_isee)
Lecture @sydneychemistry @Sydney_uni and research for @O_S_M. Science Communicator. Host of Up and Atom on @fbiradio #top5under40 #openscience #malaria

a_hardyAmanda Hardy (@AmandaChemist)
Schools and Colleges Officer @RoyalSocBio @UKBC_SB. Science teacher, Chemist. Love: Biology, Chemistry, all STEM Outreach & hands-on science. Views my own!

miloAnat Milo (@anatmilo)
Physical Organic Chemist, Catalyst Design & Data Science Enthusiast, Assistant Professor, Ben Gurion University

slaterAnna Slater (@AnnaGSlater)
Royal Society-EPSRC Dorothy Hodgkin Fellow @livuni anachronistically existing before my time (1st Dec). Furiously happy, occasionally happily furious.

mcneilAnne McNeil (@AnneJMcNeil)
U. Michigan. I’m a mom, scientist, and educator who is most happy doing anything with my kids, outside, reading, or learning something new.

aprahamianIvan Aprahamian (@aprahamian)
Chemistry Professor at Dartmouth College

berginEnda Bergin (@BerginEnda)
Chemist and Senior Editor @NatureComms. All views my own. But they will mostly be about science, so don’t get too excited.

yavuzCafer T. Yavuz (@caferyavuz)
Assoc. Prof. of Chemistry @EEWS_KAIST capturing CO2 with @PorousPolymers. Board Member @Chem_CP. Assoc. Editor at @RSC_Adv. ⛳️🚀

goodmanCatherine Goodman (@cate_goodman)
Scientific Editor at JBC. Interested in biological chemistry, science communication, reading, singing, adventures and cats. Opinions my own.

cruddenCathleen Crudden (@cathleencrudden)
researcher, scientist, chemist, mother, daughter, swimmer, tree hugger

arnaudCelia Arnaud (@celiaarnaud)
A science writer with broad interests in science, arts, and culture.

jeffries_elMalika Jeffries-El (@Chem_Diva)
Chemist, World traveler, Steelers fan, Cyclone, Crossfitter and Diva

mouseChem Mouse (@ChemMouse)
Crazy British cat lady and chemistry prof. Loves music, food and family.

leChristine Le (@christine_m_le)
organic chemist, advocate for #womeninSTEM, teacher, foodie, @Forbes 2015 #30under30; tweets about life in the lab & occasional food pics, views my own

holmesJess Holmes (@come_in_burned)
I’m supramolecular! Chemist. PhD abd. Teaching fellow at Unimelb. Education enthusiast. I value science and compassion. Views my own.

stephensonCorey Stephenson (@crjsteph)
Professor of Chemistry, University of Michigan

baumDana Baum (@dabaum77)
Chem prof doing fun stuff with DNA. Cat owner & pop culture/TV/social media junkie who enjoys running, cooking, & trips to Hawaii. My tweets are my own.

singletonDan Singleton (@dasingleton)
Organic Chemistry Professor Texas A&M Dynamic Effects in Ordinary Reactions

tavassoliAli Tavassoli (@DrAliTavassoli)
Professor of Chemical Biology

hardyMaggie Hardy (@DrMaggieHardy)
Chemistry @IMBatUQ & @QAAFI, wife, mother. On the hunt for new ion channel chemistries in venoms. Evidence-based. #Equity #Scicomm #612CC There will be spiders.

fockerHartreeFocker (@edsherer)
Predictive sciences for Process & Analytical Chemistry at Merck; firefighter; Chair COMP Division of the ACS; MN alum

slettenEllen Sletten (@EllenSletten)
Assistant Professor, UCLA Department of Chemistry and Biochemistry

kayEuan Kay (@euanrkay)
Lecturer in Chemistry @univofstandrews. Research interests include supramolecular chem, nanomaterials and molecular machines.

fauldsKaren Faulds (@FauldsKaren)
Professor of Chemistry at University of Strathclyde- Interested in spectroscopy, SERS for bioanalytical applications and all things nano!

forganRoss Forgan (@forganross)
A whisky drinking, coast-to-coast commuting old bore masquerading as a young chemistry academic at @GlasgowUni on a @royalsociety URF. MOFs and stuff.

fosseyJohn Fossey (@fosseyjohn)
Chemistry lecturer, father of three, items posted are in a personal capacity

arnoldFrances Arnold (@francesarnold)
Innovation by evolution

gagliardiLaura Gagliardi (@gagliardi8)
(No Twitter bio, but here’s a link to Gagliardi’s faculty page)

gassensmithJ. J. Gassensmith (@Gassensmith)
Chemist, professor, and technophile

daviesGemma-Louise Davies (@GemmaLouDavies)
IAS Global Research Fellow, Department of Chemistry

gomobelFernando (@gomobel)
Chemistry ⋅ Science Communication Currently at @chemistryworld, @aragonradio and @rutaciencia_tv Views are my own 😉

willockHelen Willcock (@helen_willcock)
Polymer chemist.

mitchellDebbie Gale Mitchell (@heydebigale)
Chemist, spectroscopist, mother, Assistant Teaching Professor of Chemistry at University of Denver. (Tweets are my own).

gaedeHolly Gaede (@hollygaede)
Vocation: Chemistry Professor Avocation: Football Fan

howittJulia Howitt (@howitt_julia)
Applying environmental and analytical chemistry from the alps to the ocean. Charles Sturt Uni. Opinions my own.

tonksIan Tonks (@ianatonks)
Assist Prof of Chem @ U Minnesota. Runner. Lover of Organometallics, safety, music, backpacking and long car rides.

batteasJames Batteas (@jamesbatteas)
Professor of Chemistry Texas A&M University – Research in Nanotechnology – Yep, it’s all about the small things… – All views expressed are my own.

jensenJan Jensen (@janhjensen)
Computational chemist at the University of Copenhagen

jelfsKim Jelfs (@JelfsCompChem)
Royal Society University Research Fellow in Computational Supramolecular Materials Chemistry at Imperial College London. Views own.

frankeJenna Franke (@jennafranke)
Chicago native ⌬ Enjoys pretty colors chemistry, singing, & the great outdoors ⌬ 3rd year chemical biology Ph.D. student at UC Berkeley, Northwestern alum! ⌬

laaserJenny Laaser (@jennylaaser)
Asst Prof at Pitt Chemistry; former AAAS Mass Media Fellow. Chemistry, chemsafety, scicomm, and nerdery. Tweets my own.

shermanJes Sherman (@jes_sherman)
science. lasers. super kvlt metal. powerlifting. cats. nerd culture. invisible disability awareness. endless novelty seeking. transhumanism.

jorgensenWilliam L. Jorgensen (@JorgensenWL)
Professor of Chemistry – Yale University Editor of JCTC

desimoneJoseph DeSimone (@Joseph_DeSimone)
UNC-CH, NC State; Founder: @Carbon, BlueCurrent, Liquidia Technologies, Bioabsorbable Vascular Solutions, Micell Technologies La vita è bella

kalowJulia Kalow (@JuliaKalow)
reader, eater, chemist

nicolasJulien Nicolas (@julnicolas)
Director of Research @CNRS @u_psud @umr8612. Associate Editor @ChemMater, Adv. Board Member @PolymChem. Dad of 1. #Polymer #chemistry & #Nanomedicine.

kamatPrashant Kamat (@KamatlabND)
Prof. Kamat @ Researchers @NotreDame interested #photovoltaics #solar energy #nanomaterials #environmental #renewables and #publications & #peerreview process

gademannKarl Gademann (@KarlGademann)
Synthetiker and Organiker. Chemistry professor at the University of Zurich. Interested in how natural products influence our world and change how we live.

miricaKatherine Mirica (@KMirica)
Assistant Professor of Chemistry at Dartmouth College

gibsonMatt Gibson (@LabGibson)
@warwickchem @warwickmed Addressing healthcare challenges with biomaterials science. Infectious disease, tissue/cell storage, (glycoscience, ice and polymers)

ladybeakerAnna Ahveninen (@Lady_Beaker)
PhD student in inorganic chemistry at the University of Melbourne. Aspires to be a Real Scientist.

ohrstromLars Öhrström (@Larsohrstrom)
Chemist, Chem. Eng., Prof. of Inorg. Chem,, popular science author, IUPAC div II, åsikter and opinions sont les miens, På svenska, En français, In English

laerenLaura van Laeren (@lauravlaeren)
Chemistry PhD candidate at SU. Catholic. Always writing something. Sauvignon Blanc addict. Currently thesising, ranting may occur. (previously @laurajane0103)

gamonLuke Gamon (@lgamon)
Endeavour Postdoc Fellow at @Uni_Copenhagen | @SciFinder #FutureLeaders16 Alumni | Former chemistry PhD @unimelb/@Bio21Institute | SciComm, Biotech & Innovation

aronAron (@lonepair)
Virtual chemist / #おたく / Professor in Materials Design at @imperialcollege / #openscience

leinMatthias Lein (@m_onlein)
Either night or the Prussians will come. theoretical chemist, father, geek – possibly not in this order

stoermerMartin Stoermer (@MartinStoermer)
PhD in Organic Chemistry. Organic and Medicinal Chemist. May contain traces of football.

mceepMatthew (@MCeeP)
I’m a biochemist who spends his time blogging and cartooning @ErrantScience about my adventures in #PostDoc research. I also write a column for @LaboratoryNews

felletMelissae Fellet (@mfellet)
Freelance science writer interested in chemistry, materials science, science policy, engineering. Views my own.

franclMichelle Francl (@MichelleFrancl)
Chemist, writer, professor, mother, wife, blogger

davenportMatt Davenport (@MrMattDavenport)
Reporter & multimedia producer for @cenmag. Views are my own. Oxford commas courtesy of my employer’s style guide.

borduasNadine Borduas (@nadineborduas)
French Canadian postdoc with @krismcneill, studying the #atmoschem of clouds while #RealTimeChem-ing on the ski slopes with a soft spot for African elephants

brownNathan Brown (@nathanbroon)
#Scientist @ICR_London • #Scot • #Author • #Coder • #CompChem • #Chemist • #DataScience • #BigData • @Molomics • Fiancé is the Legoman • Tweets My Opinion

nevinsNeysa Nevins (@neysanev)
Computational chemist, GSK Fellow | I meditate walking between meetings.

gastonNicola Gaston (@nicgaston)
takes enormous delight in very small things | féministe ou la ferme | will always run for the bus | going for a Burton… | nolite te bastardes carborundorum

notmanNina Notman (@ninanotman)
Freelance science writer and editor specialising in chemistry

nothfTimothy (@NotHF)
Organic chemistry Ph.D. candidate who works on Au clusters.

winterJulia Winter (@OChemJulie)
Creating mobile technology for higher ed science. 20+ years in classroom. Have my own Julie/Julia thing going on. Founder @LearnAlchemie

farhaOmar Farha (@omarfarha5)
(No Twitter bio, but here’s a link to Farha’s faculty page)

matthewsPhilippa Matthews (@OrangePip86)
Scicomm and singing | @RoySocChem | @fairhavensinger | @sspiritsingers | Also I knit things | Views my own

spokoynyAlex Spokoyny (@organomimetic)
Chemist and whiskey aficionado.

paleyMiranda Paley (@paleymir)
Trained as a chemical biologist. Loving learning other areas of chem everyday as Managing Editor of @acscentsci. Views my own.

melchiorrePaolo Melchiorre (@Pamelck)
Husband to (@LornaPiazzi), Dad, Research Professor (@ICIQchem), Group Leader (@MelchiorreGroup) – Uses Light to Make Chiral Molecules / Tweets my Views

ballPhilip Ball (@philipcball)
This is me. On a good day. I write mostly about science.

thomasSarah Thomas (@PittaGirl)
Senior International Development Manager at the Royal Society of Chemistry, and world birder, especially pittas.

adamsDave Adams (@prof_djadams)
All views are my own!

elliotSJ Elliot (@Prof_SJE)
protein electrochemistry, redox enzymology, and science pedantry at a Hub University. Once an English major. (Once). Keep Calm & Carry Electrons

leighDave Leigh (@ProfDaveLeigh)
Royal Society Research Professor & Sir Samuel Hall Chair of Chemistry, University of Manchester, UK. european first, british second. molecules. machines. magic.

kennyPeter Kenny (@pwk2013)
Scientist, nomad, agnostic, heretic, slayer of soucouyants (and metrics), aspiring citizen of the world

sorensen-unruhRissa Sorensen-Unruh (@RissaChem)
Intro Chem, Gen Chem, & Organic Chem Prof. Chem Ed Researcher. Statistics PhD student. Human being in my own right. Lover of oxford commas. Tweets = Personal.

janszeSuzanne Jansze (@S_Jansze)
Love for chemistry/science/research, playing the saxophone, music in general and other interesting stuff.

reismanSarah Reisman (@sarah_reisman)
Professor of Chemistry, California Institute Technology

cadySarah Cady (@sarahdcady)
I love giant magnets.

skrabalakSara Skrabalak (@SaraSkrabalak)
Chemistry Professor at Indiana University – Bloomington. All views expressed are my own.

spainSeb Spain (@sebspain)
Lecturer in Polymer Chemistry @sheffielduni. Polymer chemist, guitarist. Opinions my own.

goldupSteve Goldup (@sgoldup)
I’m an Associate Professor and URF at the University of Southampton. All views my own.

silvermanScott K. Silverman (@sksilverman)
Chemistry prof at University of Illinois at Urbana-Champaign. DNA catalysts. I try to compete as a 10k/5k runner, but others are faster. Penguins are great!

zingalesSarah Zingales (@SKZingales)
Chemist, Professor, Skeptic, Vegetarian, Ballerina, Gamer, Wine Snob, and Science Enthusiast #50BookPledge #RealTimeChem #WarEagle #GoBlue

camposLuis M. Campos (@soyluiscampos)
Assistant Professor of Chemistry Columbia University. Born in Mexico. American Citizen. Donald Trump is not my President.

bennettThomas D. Bennett (@ThomasDBennett)
Expatriate northern materials chemist in Cambridge. Views are my own, not yours.

thomasChristophe Thomas (@ThomasPolymer)
Professor, @ChimieParisTech, @CNRS, @psl_univ,,

easunTimothy Easun (@TimEasun)
Supramolecular photochemist, time-resolved spectroscopist, occasional twitterer. @ChemistryCU as a @royalsociety URF. MOFs etc.

viswanathanVenkat Viswanathan (@venkvis)
Asst. Professor @CarnegieMellon University, Advanced Batteries, Electrochemical Devices

patelVibhuti Patel (@VibhutiJPatel)
Science geek, BSc/PhD from @warwickuni, lover of all things arty-farty, hater of food waste. British by birth, Indian by heritage, European by feeling.

richardsVictoria Richards (@victoriajrich)
Inorganic and materials chemist. Senior Editor for @NatureComms. Views are my own.

Posted in Fun, Housekeeping | Tagged , , , , , , , , , | 3 Comments

On the nature of chemistry publishing

I’ve just returned from #ACSPhilly (the 252nd ACS meeting in Philadelphia) where I got to meet some awesome chemtweeps, many for the first time. This was my first ACS meeting since March 2009 (the one in Salt Lake City) which, coincidentally, is the same month that I joined Twitter.

I was kindly invited to speak in the ‘Crafting chemical communication’ symposium organized by @DrRubidium and @jamesbatteas. A few people asked for a copy of my presentation and so I figured I would post it here. My usual title — ‘The nature of chemistry publishing’ — was not allowed by the ACS gods, but James came to the rescue and added the ‘On’ at the beginning. Apparently talks at ACS meetings cannot begin with ‘The’ — I imagine there is a very good reason for this*.

ACS Philly Comm Chem.001

(*I’m lying).

Posted in Journal stuff | Tagged , , , , , , , , , , , , , , , | Leave a comment

Credit where credit is due

Let me just flag up to those of you who aren’t aware of my day job, I’m the Chief Editor of Nature Chemistry; best I put that at the top of this post considering the subject matter…

***See updates at the bottom of the post***

Many thanks to a reader of this blog for forwarding to me an email that they received from Angewandte Chemie thanking them for being one of their ‘outstanding referees’. I applaud such referee-recognition efforts; more journals should do this.

What caught my eye, however, is that the final paragraph of the e-mail mentions statistics related to Angewandte Chemie (and one other journal; can you guess which one?), backed up with 6 figures. First are a couple of graphs showing where submissions to Angewandte Chemie come from (for 2001-2015) and the geographical breakdown of referees (for 2008-2015). It appears that, in 2015, more submissions came from East Asia (somewhat unhelpfully not defined) than any other region and that more referee reports came from Germany than any other country. I don’t feel that I can reproduce the actual graphs here because I did not make them and nor have I sought permission to reproduce them (hey kids, we call this part of the blog post ‘foreshadowing’).

After discussing submissions and referees, the final paragraph goes on to discuss citation metrics in a somewhat contradictory fashion; I’m going to quote from the e-mail now and assume this won’t get me into any hot water (legal or otherwise):

“Too many scientists are obsessed with metrics these days. Figures 3-6 in the attachment demonstrate that Angewandte Chemie publishes indeed many highly cited papers (one only has to look at absolute numbers).”

Which is a bit weird, no? Hey everyone, too many people are obsessed with metrics these days, so here are MORE metrics for you to look at. Hmm.

Now, you know what, I am going to reproduce figures 3 and 4 from the e-mail that Angewandte Chemie sent to its outstanding referees. The reason that I feel on pretty firm ground doing this (despite Wiley’s history of going after bloggers who have reproduced figures from their journals) is that figures 3 and 4 are, with only minor modifications, mine. They first appeared on this blog in a post about citation distributions in chemistry journals.

Here’s figure 3 from the e-mail (top) and my original (bottom).


And here’s figure 4 from the e-mail (top) and my original (bottom).


Pretty similar huh? Same colours, same fonts… – well, that’s because they are clearly the original images from my blog post.

Did Angewandte Chemie ask my permission to reproduce these figures? No.

Did Angewandte Chemie acknowledge in the e-mail that they sent to their referees where these figures came from? I don’t think so (at least not as far as I can tell; perhaps the figures contain hyperlinks, but in the flat version forwarded to me, there is nothing that appears to attribute the figures to me).

What Angewandte Chemie have done, however, is to add logos for GDCh, Angewandte Chemie and Wiley-VCH to the bottom of each figure. Stay classy Angewandte, stay classy. You are now the Daily Mail of chemistry publishing. You couldn’t even be bothered to get the data yourself and re-plot it!

To be fair, they have invested a huge amount of time and effort to add a title and a footnote to each figure, but I’m not sure that means you can ignore where you got the actual figure from.

Now, I get the impression that Angewandte Chemie is unhappy with my citation-distribution blog post. ‘Why?’, I hear you ask. Well, we also get treated to figures 5 and 6. Figures 5 and 6 from the e-mail that they sent to their referees are not my figures, so I will not reproduce them here (take note, Angewandte). I will, however, describe them to you. Figure 5 basically puts the data from figures 3 and 4 onto a single graph, but retains the y-axis scale from figure 4. What this does of course, is put the Nature Chemistry data in the noise. This figure very clearly proves that Angewandte Chemie publishes more papers than Nature Chemistry; I’m pretty sure there are simpler ways to plot this, however.

Now, figure 6. Figure 6 takes the portion of figure 5 that looks at the citation range from 40-100+ citations (except, of course, they simply use the label ‘100’, not ‘100+’ like I did on my graphs… c’mon Angewandte, attention-to-detail folks!). Now, what this graph shows is that when you consider citations in 2014 to papers published in 2012 and 2013, Angewandte Chemie has many more that have accumulated 40-100+ citations than Nature Chemistry. This is not surprising. Angewandte Chemie publishes many very good papers and many highly cited papers. And considering that in 2012-2013 it published almost 20 times as many papers (reviews and research papers) as Nature Chemistry, of course it’s going to have more.

The purpose of my original blog post was, for the most part, to examine citation distributions – it was a follow-up to another blog post that looked in detail at what contributed to Nature Chemistry‘s 2014 impact factor. Sure, I can see how the post could come across as a citation pissing-contest, but the only specific comparisons I make in the text of the post are somewhat superficial and are between Angewandte Chemie and the Journal of the American Chemical Society (JACS) and between Angewandte and Chemical Science. I explicitly pointed out that the y-axis is very different across the charts I plotted for 6 different journals. I did offer a way in which you could compare journals if you wished to, by considering the percentage of published items with a given number of citations. The only way to make any comparisons is to normalize for quantity (and even then it might not be all that meaningful).

Anyway, I find it interesting that Angewandte Chemie compared itself to Nature Chemistry in its e-mail to its referees. I thought I would be helpful and do the comparison for them to JACS; the graphs are below. In terms of published items, the 2012-2013 counts are 4572 (Angewandte) and 5939 (JACS), so roughly similar – well, much more similar than Nature Chemistry and Angewandte for a start.

Here’s my version of figure 5 from Angewandte‘s e-mail to its referees (only with JACS data instead of Nature Chemistry):


And here’s my version of figure 6 from Angewandte‘s e-mail to its referees (only with JACS data instead of Nature Chemistry):


Well, look at that, JACS publishes more highly cited papers than Angewandte Chemie! They also publish more papers in total too. Read into that what you will.

So Angewandte, if you do fancy using these graphs in your next e-mail to your referees, don’t put your logo on them and do acknowledge where you got them from – but I do give you my permission to re-use them for that purpose.

With regard to your unauthorized and unattributed re-use of my figures in the e-mail that you have already sent, I kindly ask that you send a follow-up e-mail to everyone that received it noting where the images came from, including a link to the original blog post.

I don’t know if your use of my images in an e-mail that went to hundreds of people counts as ‘publishing’ them, but regardless, it seems only fair to give credit where credit is due – just like you are doing with your outstanding referees.

UPDATE 8:45 am, 15 March: @angew_chem have apologized on Twitter and have promised to follow up with the referees; I thank them for getting back to me so promptly and for doing what I asked.


UPDATE 3:45 pm, 15 March: I’ve had a very nice e-mail from Angewandte Chemie apologizing for their oversight and they also shared with me the draft of the follow-up e-mail that they intend to send to the referees and asked me for any comments I had concerning it. I take it back, they are not the Daily Mail of chemistry publishing after all.

UPDATE 3:35 pm, 17 March: As pointed out in the comments below, and also confirmed in e-mails from others, Angewandte has indeed followed up with the referees as they said they would. I thank them for doing this so quickly and without any fuss whatsoever.

Posted in Journal stuff, Metrics, Publishing | Tagged , , , , , , , , , | 12 Comments

We need to talk about Twitter…

As part of Materials Week at the University of Warwick, I was asked to talk about social media and how it is used by scientists (and of course I threw in a bit about how journals use it too). Because it is what I know best, the majority of my talk focused on Twitter, with a side of Tumblr, Facebook, YouTube and blogging. And I figured that the best way to find out the reasons why scientists use Twitter was to ask them, and so…

The response was great (and was kindly Storified by @CrimsonAlkemist). I’m certainly not the first to throw this question out there on Twitter; I know others have done it before and people have also blogged about why they use Twitter too (for example, see this post by @Alexis_Verger). Please do point to other such posts in the comments as well – I imagine there are plenty of others out there.

Anyway, the presentation that I threw together can be found by clicking on the image below; it’s essentially a series of screenshots that I talked around. I think the talk needs refining somewhat, but this is a good place to start and I’ll hone it from here if I give it again in the future… if you wish to use any of the slides yourself, please feel free to do so.


Posted in Journal stuff | Tagged , , , , , , , | 1 Comment

Imperfect impact

The problems with impact factors are well known – I could give you a long list of things to read that explain why, but just start with this blog post from Stephen Curry and go from there.

I have a slide that I use in my talks that sums up one particular problem – that the impact factor (IF) of any given journal tells you absolutely nothing about any given article in that journal. For example, the current IF of Organometallics is just over 4, whereas Nature‘s is more than 10 times that at just over 41. But does that mean that every Nature paper is 10 times ‘better’ than every Organometallics paper? (Answer: of course not! – and how on Earth would you measure ‘better’ anyway?). It also doesn’t guarantee that a particular Nature paper will have received more citations than any given Organometallics paper (after all, a wide distribution of citations make up an IF). Considering the perverse incentives in science, however, I wonder how many people would rather have on their CV an Organometallics paper that has received 50 citations in a year instead of a Nature paper that has garnered only 10 in the same period of time?

Anyway, I digress. The slide I have looks at things from a different point of view. Wouldn’t it be interesting if you could take exactly the same paper and publish it at roughly the same time in a bunch of different journals? Take your fancy-metal-catalyzed-cross-coupling-based synthesis of tenurepleaseamycin and submit it to (and have it published in) Angewandte, JACS, Nature Chem, Science, JOC, Tet Lett and Doklady Chemistry and then sit back and see how the citations roll in. Of course, it’s the same paper – it’s not a better paper in one journal than another, so it will get cited roughly equally in all journals, right? Well, all you can really do is speculate, because if you did try to do exactly that you’d end up really annoying some chemistry-journal editors and you might not get the paper published anywhere (well, I can think of a few places that would probably still take it, but discretion is the better part of valour and all that).

Well, never fear! The experiment has been done. Although it wasn’t an experiment, it wasn’t done for the purpose of comparing citations in different journals and it’s happened more than once. It turns out that in medical publishing, editorials/white papers occasionally get published in more than one journal. So, say hello to ‘Clinical Trial Registration — Looking Back and Moving Ahead‘. A few years back, I looked at the citations this paper had received in a range of different journals and the IFs of those journals – the slide from my talk with all of the data on is shown below.


There’s a pretty good correlation between the number of citations that this identical paper received in each journal with the IFs of those journals. Of course, perhaps more people read the New England Journal of Medicine than the Medical Journal of Australia and so a wider audience will likely mean a wider potential-citation pool. Whatever the reasons (and it’s not all that difficult to come up with others), the slide shows how silly it is to assume that the IF of a journal has any bearing on how good any particular paper in that journal is. As I have said before, the only way to figure out if a paper is any good is to actually read the damn thing – the name (or IF) of the journal in which a paper is published should never act as a proxy for how awesome (or not) a paper is.

So, as well as pointing out one specific flaw in the IF, when showing this slide it does allow me to make a joke about how the correlation would be even better if it wasn’t for some (imaginary, I hasten to add) Croatian citation ring… I apologize if I have offended any Croatian doctors who happen to be reading this… but the joke usually gets a laugh.

Posted in Metrics, Metrics-y stuff, Publishing | Tagged , , , , , , , , , , , , , , , , | 12 Comments

Chemistry journal citation distributions

Over at my day job, I recently looked at the distribution of citations that 2012 and 2013 Nature Chemistry papers (Articles, Reviews and Perspectives) received in 2014 – essentially the citations that are used to calculate the 2014 impact factor of the journal. I would recommend having a read of that post before ploughing through this one. I’ve now done the analysis for five other general chemistry journals, just to see how they all stack up. In each case, the data is from Web of Science (All Databases) and is refined by document types ‘Article’ and ‘Review’. In the Sceptical Chymist post I also did the calculation for Nature Chemistry after removing the Review articles from the data, but haven’t done that here.

So, here is what Nature Chemistry looks like:


And here’s JACS, Angewandte Chemie (the International Edition), Chemical Science, Chem Comm and Chem Eur J (note that because of the wildly different volume of content across the 6 journals, the scale on the y-axis changes quite significantly – as does the smoothness of the distribution; also, for the Chem Comm and Chem Eur J, I have included magnified sections of the later portions of the distributions):






One way that you can compare journals that publish vastly different numbers of papers is to look at the percentage of published items that have more than a given number of citations. For example, each journal has 100% of papers with 0 or more citations, but what does the percentage drop to when you consider papers with 1 or more citations? If 5% of a journal’s papers have 0 citations in 2014, then the second point plotted on the graph would appear at 95% (i.e., 95% of papers would have one or more citation). If you do this analysis for the 6 journals above, this is what you find:

n or more cites all

If you stack these graphs on top of one another, you can then compare (for the most part) across the 6 journals:

n or more cites overlap

It’s interesting to note that JACS compares favourably to Angewandte, even though Angewandte publishes far more review-type articles, and also note how Chemical Science is not all that far behind Angewandte when you do this sort of analysis.

Posted in Journal stuff | Tagged , , , , , , , , , , , , , | 4 Comments